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CNNs

1 Neurons are similar to that of MLP

Perform a linear (dot product) operation and have a nonlinearity
2 Architecture will have a differentiable loss function, backpropagation

is used
3 Same tips and tricks apply
4 So, what changes?
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An MLP

1 Input is a vector

2 Series of densely connected hidden layers
3 Neurons in each layer are independent
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An MLP for processing an image

1 Say, we want to process a 200× 200 RGB image

2 Vectorizing leads to 200× 200× 3→ 120K neurons in the input layer
3 A hidden layer of same size leads to ≈ 1.44e10 weights → ≈ 58GB

4 Full connectivity blows the number of weights → hardware limits,
overfitting, etc.

5 Flattening removes the structure
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Large Signals

1 Have invariance in translation

2 Features may occur at different locations in the signal
3 Convolution incorporates this idea: Applies same linear operation at

all the locations and preserves the structure
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Convolution
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Convolution

1 Preserves the structure

if the i/p is a 2D tensor → o/p is also a 2D tensor
There exist a relation between the locations of i/p and o/p values
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Convolution

1 Let x = (x1, x2, . . . xW ) is the input, k = (k1, k2, . . . kw) is the kernel

2 The result (x ~ k) of convolving x with k will be a 1D tensor of size
W − w + 1

(x ~ k)i =
w∑

j=1
xi−1+jkj

=(xi, . . . xi+w−1) · k
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Convolution
1 Powerful feature extractor

2 For instance, it can perform differential operation and look for
interesting patterns in the input

3

(0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ~ (−1, 1) = (0, 0, 1, 1, 1, 1, 0, 0, 0)
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Convolution
1 Powerful feature extractor
2 For instance, it can perform differential operation and look for

interesting patterns in the input

3

(0, 0, 1, 1, 0, 0.1, 0.2, 1, 1, 1, 0) ~ (1, 1) = (0, 1, 2, 1, 0.1, 0.3, 1.2, 2, 2, 1)
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Convolution

1 Naturally generalizes to multiple dimensions

2 In their most usual form, CNNs process 3D tensors of size
C ×H ×W with kernels of size C × h× w and result in 2D tensors
of size H − h + 1×W − w + 1

3 Note that we generally refer to these inputs as 2D signal (despite
having C channels), because, they are referenced as vectors indexed
by 2d locations without structure in the channel dimension
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2D Convolution
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2D Convolution
1 Kernel is not convolved in the channel dimension

2 Another way to interpret convolution is that an affine function is
applied on an input block of size C × h× w and results in output of
size D × 1× 1

3 Same affine function is applied on all such blocks in the input
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Convolution

1 Preserves the input structure

1D signal outputs 1D signal, 2D signal outputs 2D signal
Adjacent components in o/p are influenced by adjacent parts in the i/p

2 If the channel dimension has a metric meaning (e.g. time) 3D
convolution can be employed (e.g. frames in a video)
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Terminology in Convolution
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Convolution function in PyTorch

1 F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

2 weight is D × C × h× w dimensional kernels
3 bias D dimensional
4 input is N × C ×H ×W dimensional signal
5 Output is N ×D × (H − h + 1)× (W − w + 1) tensor
6 Autograd compliant
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Convolution function in PyTorch

input = torch.empty(128, 3, 20, 20).normal_()
weight = torch.empty(5, 3, 5, 5).normal_()
bias = torch.empty(5).normal_()
output = F.conv2d(input, weight, bias)
output.size()
torch.Size([128, 5, 16, 16])
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Look/Access the filters

weight[0,0]
tensor([[-0.6974, 0.1342, -0.2632, -0.4672, 0.1827],
[-0.1184, -0.2164, 0.2772, -0.1099, 0.0103],
[-0.8272, 0.3580, 0.2398, -0.5795,-0.9472],
[-1.1734, -0.1019, 0.7394, 0.3342, 0.1699],
[ 1.9271, 0.1250, 0.4222, 0.2014, 1.1100]])
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Conv layer in PyTorch

1 Class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True)

2 kernel_size cane be either a pair (h, w) or a single value k
interpreted as (k, k).

3 Encloses the convolution as a module
4 Initializes the kernel parameters and biases as random
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Conv layer in PyTorch

f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
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Conv layer in PyTorch

f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])

input = torch.empty(128, 3, 28, 28).normal_()
output = f(input)
output.size()
>>torch.Size([128, 5, 27, 26])
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Padding in Convolution

1 Adds zeros around the input

2 Takes cares of size reduction after convolution
3 Instead of zeros, one may pad with signal values at the edges
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Padding in Convolution
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Padding in Convolution

Dr. Konda Reddy Mopuri dlc-4.1/Convolution 42



Stride in Convolution

1 Specifies the step size taken while performing convolution

2 Default value is 1, i.e., move the kernel across the signal densely
(without skipping)
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Padding and Stride in Convolution
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Dilation in Convolution

1 Manipulates the size of the kernel via expanding its size without
adding weights.

2 In other words, it inserts 0s in between the kernel values
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Without Dilation
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Dilation (2, 2)
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Dilation

1 Expands the kernel by adding rows and columns of zeros

2 Default value for dilation is 1, i.e., no zeros placed
3 Any higher value of dilation makes the kernel sparse
4 Dilation increases the receptive field
5 It is referred to as ’atrous’ convolution
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