

Deep Learning

4.1 Convolution

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

¹ Neurons are similar to that of MLP

1 Neurons are similar to that of MLP

Perform a linear (dot product) operation and have a nonlinearity

- ¹ Neurons are similar to that of MLP
	- Perform a linear (dot product) operation and have a nonlinearity
- ² Architecture will have a differentiable loss function, backpropagation is used

- ¹ Neurons are similar to that of MLP
	- Perform a linear (dot product) operation and have a nonlinearity
- ² Architecture will have a differentiable loss function, backpropagation is used
- ³ Same tips and tricks apply

- **1** Neurons are similar to that of MLP
	- Perform a linear (dot product) operation and have a nonlinearity
- ² Architecture will have a differentiable loss function, backpropagation is used
- ³ Same tips and tricks apply
- ⁴ So, what changes?

An MLP

1 Input is a vector

An MLP

1 Input is a vector

² Series of densely connected hidden layers

An MLP

1 Input is a vector

- ² Series of densely connected hidden layers
- ³ Neurons in each layer are independent

1 Say, we want to process a 200×200 RGB image

- **1** Say, we want to process a 200×200 RGB image
- 2 Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer

- **1** Say, we want to process a 200×200 RGB image
- 2 Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer
- 3 $\,$ A hidden layer of same size leads to $\approx 1.44e^{10}$ weights $\rightarrow \approx 58GB$

- **1** Say, we want to process a 200×200 RGB image
- 2 Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer
- 3 $\,$ A hidden layer of same size leads to $\approx 1.44e^{10}$ weights $\rightarrow \approx 58GB$
- 4 Full connectivity blows the number of weights \rightarrow hardware limits, overfitting, etc.

- **1** Say, we want to process a 200×200 RGB image
- 2 Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer
- 3 $\,$ A hidden layer of same size leads to $\approx 1.44e^{10}$ weights $\rightarrow \approx 58GB$
- 4 Full connectivity blows the number of weights \rightarrow hardware limits, overfitting, etc.
- ⁵ Flattening removes the structure

Large Signals

¹ Have invariance in translation

Large Signals

- **1** Have invariance in translation
- ² Features may occur at different locations in the signal

Large Signals

- ¹ Have invariance in translation
- ² Features may occur at different locations in the signal
- ³ Convolution incorporates this idea: Applies same linear operation at all the locations and preserves the structure

Preserves the structure

¹ Preserves the structure

• if the i/p is a 2D tensor \rightarrow o/p is also a 2D tensor

1 Preserves the structure

- if the i/p is a 2D tensor \rightarrow o/p is also a 2D tensor
- \bullet There exist a relation between the locations of i/p and o/p values

1 Let $\mathbf{x} = (x_1, x_2, \dots x_W)$ is the input, $\mathbf{k} = (k_1, k_2, \dots k_w)$ is the kernel

- **1** Let $\mathbf{x} = (x_1, x_2, \dots x_W)$ is the input, $\mathbf{k} = (k_1, k_2, \dots k_w)$ is the kernel
- 2 The result $(x \otimes k)$ of convolving **x** with **k** will be a 1D tensor of size $W - w + 1$

$$
(x \circledast k)_i = \sum_{j=1}^w x_{i-1+j} k_j
$$

$$
= (x_i, \dots x_{i+w-1}) \cdot \mathbf{k}
$$

1 Powerful feature extractor

- **1** Powerful feature extractor
- ² For instance, it can perform differential operation and look for interesting patterns in the input

- ¹ Powerful feature extractor
- ² For instance, it can perform differential operation and look for interesting patterns in the input

 $(0, 0, 0, 1, 2, 3, 4, 4, 4, 4) \otimes (-1, 1) = (0, 0, 1, 1, 1, 1, 0, 0, 0)$

3

- ¹ Powerful feature extractor
- ² For instance, it can perform differential operation and look for interesting patterns in the input

 $(0, 0, 1, 1, 0, 0.1, 0.2, 1, 1, 1, 0) \otimes (1, 1) = (0, 1, 2, 1, 0.1, 0.3, 1.2, 2, 2, 1)$

3

¹ Naturally generalizes to multiple dimensions

- ¹ Naturally generalizes to multiple dimensions
- ² In their most usual form, CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H - h + 1 \times W - w + 1$

- ¹ Naturally generalizes to multiple dimensions
- In their most usual form, CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H - h + 1 \times W - w + 1$
- ³ Note that we generally refer to these inputs as 2D signal (despite having C channels), because, they are referenced as vectors indexed by 2d locations without structure in the channel dimension

input

 \circledast

¹ Kernel is not convolved in the channel dimension

- ¹ Kernel is not convolved in the channel dimension
- ² Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$ and results in output of size $D \times 1 \times 1$

- ¹ Kernel is not convolved in the channel dimension
- ² Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$ and results in output of size $D \times 1 \times 1$

Same affine function is applied on all such blocks in the input

- ¹ Kernel is not convolved in the channel dimension
- ² Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$ and results in output of size $D \times 1 \times 1$

Same affine function is applied on all such blocks in the input

¹ Preserves the input structure

¹ Preserves the input structure

1D signal outputs 1D signal, 2D signal outputs 2D signal

1 Preserves the input structure

- 1D signal outputs 1D signal, 2D signal outputs 2D signal
- \bullet Adjacent components in o/p are influenced by adjacent parts in the i/p

- **1** Preserves the input structure
	- 1D signal outputs 1D signal, 2D signal outputs 2D signal
	- Adjacent components in o/p are influenced by adjacent parts in the i/p
- ² If the channel dimension has a metric meaning (e.g. time) 3D convolution can be employed (e.g. frames in a video)

Terminology in Convolution

¹ F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

- ¹ F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels

- ¹ F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- ³ bias *D* dimensional

- ¹ F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- ³ bias *D* dimensional
- 4 input is $N \times C \times H \times W$ dimensional signal

- ¹ F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- ³ bias *D* dimensional
- 4 input is $N \times C \times H \times W$ dimensional signal
- **5** Output is $N \times D \times (H h + 1) \times (W w + 1)$ tensor

- ¹ F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- ³ bias *D* dimensional
- 4 input is $N \times C \times H \times W$ dimensional signal
- **5** Output is $N \times D \times (H h + 1) \times (W w + 1)$ tensor
- ⁶ Autograd compliant


```
input = torch.empty(128, 3, 20, 20).normal( )weight = torch.empty(5, 3, 5, 5).normal()bias = torch.empty(5).normal()output = F.conv2d(input, weight, bias)
output.size()
torch.Size([128, 5, 16, 16])
```
Look/Access the filters

weight[0,0] tensor([[-0.6974, 0.1342, -0.2632, -0.4672, 0.1827], $[-0.1184, -0.2164, 0.2772, -0.1099, 0.0103],$ $[-0.8272, 0.3580, 0.2398, -0.5795, -0.9472]$ [-1.1734, -0.1019, 0.7394, 0.3342, 0.1699], [1.9271, 0.1250, 0.4222, 0.2014, 1.1100]])

¹ Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

- ¹ Class torch.nn.Conv2d(in_channels, out_channels, kernel size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- 2 kernel size cane be either a pair (h, w) or a single value k interpreted as (k, k) .

- ¹ Class torch.nn.Conv2d(in_channels, out_channels, kernel size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- 2 kernel size cane be either a pair (h, w) or a single value k interpreted as (k, k) .
- ³ Encloses the convolution as a module

- ¹ Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- 2 kernel size cane be either a pair (h, w) or a single value k interpreted as (k, k) .
- ³ Encloses the convolution as a module
- ⁴ Initializes the kernel parameters and biases as random


```
f = nn.Conv2d(in channels = 3, out channels = 5,kernel_size = (2, 3)for n, p in f.named_parameters():
...print(n, p.size())
```

```
>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
```


```
f = nn.Cony2d(in channels = 3, out channels = 5,kernel_size = (2, 3)for n, p in f.named_parameters():
...print(n, p.size())
>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
input = torch.empty(128, 3, 28, 28) .normal()output = f(input)output.size()
```
*>>*torch.Size([128, 5, 27, 26])

Dr. Konda Reddy Mopuri dlc-4.1/Convolution 39

Padding in Convolution

¹ Adds zeros around the input

- ¹ Adds zeros around the input
- ² Takes cares of size reduction after convolution

- ¹ Adds zeros around the input
- ² Takes cares of size reduction after convolution
- ³ Instead of zeros, one may pad with signal values at the edges

Stride in Convolution

¹ Specifies the step size taken while performing convolution

Stride in Convolution

- ¹ Specifies the step size taken while performing convolution
- ² Default value is 1, i.e., move the kernel across the signal densely (without skipping)

Padding and Stride in Convolution.

mailte effair

Dilation in Convolution

¹ Manipulates the size of the kernel via expanding its size without adding weights.

Dilation in Convolution

- ¹ Manipulates the size of the kernel via expanding its size without adding weights.
- ² In other words, it inserts 0s in between the kernel values

Without Dilation

Dilation (2, 2)

¹ Expands the kernel by adding rows and columns of zeros

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed

- ¹ Expands the kernel by adding rows and columns of zeros
- ² Default value for dilation is 1, i.e., no zeros placed
- ³ Any higher value of dilation makes the kernel sparse

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse
- Dilation increases the receptive field

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse
- Dilation increases the receptive field
- It is referred to as 'atrous' convolution