

Deep Learning

4.1 Convolution

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

Neurons are similar to that of MLP

Neurons are similar to that of MLP

• Perform a linear (dot product) operation and have a nonlinearity

- 1 Neurons are similar to that of MLP
 - Perform a linear (dot product) operation and have a nonlinearity
- ② Architecture will have a differentiable loss function, backpropagation is used

- 1 Neurons are similar to that of MLP
 - Perform a linear (dot product) operation and have a nonlinearity
- ② Architecture will have a differentiable loss function, backpropagation is used
- ③ Same tips and tricks apply

- In Neurons are similar to that of MLP
 - Perform a linear (dot product) operation and have a nonlinearity
- ② Architecture will have a differentiable loss function, backpropagation is used
- 3 Same tips and tricks apply
- So, what changes?

An MLP

Input is a vector

An MLP

Input is a vector

2 Series of densely connected hidden layers

An MLP

- Input is a vector
- ② Series of densely connected hidden layers
- 3 Neurons in each layer are independent

(1) Say, we want to process a 200×200 RGB image

- (1) Say, we want to process a $200\times 200~{\rm RGB}$ image
- 2 Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer

- (1) Say, we want to process a $200\times 200~{\rm RGB}$ image
- ② Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer
- 3 A hidden layer of same size leads to $pprox 1.44 e^{10}$ weights ightarrow pprox 58 GB

- ${f 0}$ Say, we want to process a 200 imes200 RGB image
- ② Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer
- 3 A hidden layer of same size leads to $pprox 1.44 e^{10}$ weights ightarrow pprox 58 GB
- ④ Full connectivity blows the number of weights → hardware limits, overfitting, etc.

- ${f 1}$ Say, we want to process a 200 imes200 RGB image
- ② Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120K$ neurons in the input layer
- 3 A hidden layer of same size leads to $pprox 1.44 e^{10}$ weights ightarrow pprox 58 GB
- Full connectivity blows the number of weights \rightarrow hardware limits, overfitting, etc.
- 5 Flattening removes the structure

Large Signals

1 Have invariance in translation

Large Signals

- Have invariance in translation
- 2 Features may occur at different locations in the signal

Large Signals

- Have invariance in translation
- ② Features may occur at different locations in the signal
- 3 Convolution incorporates this idea: Applies same linear operation at all the locations and preserves the structure

		1	Input (width	nW)			
2	-1	0	2	3	-2	0	2
		Kernel o (width	or filter h w)				
	-	-	100				
	2	0	-1				
	2	0 utput (widt	-1 h W-w+1)				

Preserves the structure

Preserves the structure

 $\circ\,$ if the i/p is a 2D tensor $\rightarrow\,$ o/p is also a 2D tensor

Preserves the structure

- $\, \bullet \,$ if the i/p is a 2D tensor $\rightarrow \, o/p$ is also a 2D tensor
- ${\scriptstyle \circ}$ There exist a relation between the locations of i/p and o/p values

(1) Let $\mathbf{x} = (x_1, x_2, \dots x_W)$ is the input, $\mathbf{k} = (k_1, k_2, \dots k_w)$ is the kernel

- (1) Let $\mathbf{x}=(x_1,x_2,\ldots x_W)$ is the input, $\mathbf{k}=(k_1,k_2,\ldots k_w)$ is the kernel
- ② The result $(x \circledast k)$ of convolving **x** with **k** will be a 1D tensor of size W w + 1

$$(x \circledast k)_i = \sum_{j=1}^w x_{i-1+j} k_j$$
$$= (x_i, \dots x_{i+w-1}) \cdot \mathbf{k}$$

Powerful feature extractor

- Powerful feature extractor
- ② For instance, it can perform differential operation and look for interesting patterns in the input

- Powerful feature extractor
- ② For instance, it can perform differential operation and look for interesting patterns in the input

 $(0, 0, 0, 1, 2, 3, 4, 4, 4) \otimes (-1, 1) = (0, 0, 1, 1, 1, 1, 0, 0, 0)$

3

- Powerful feature extractor
- ② For instance, it can perform differential operation and look for interesting patterns in the input

 $(0,0,1,1,0,0.1,0.2,1,1,1,0) \circledast (1,1) = (0,1,2,1,0.1,0.3,1.2,2,2,1)$

3

1 Naturally generalizes to multiple dimensions

- In Naturally generalizes to multiple dimensions
- 2 In their most usual form, CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H h + 1 \times W w + 1$

- In Naturally generalizes to multiple dimensions
- 2 In their most usual form, CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H h + 1 \times W w + 1$
- ③ Note that we generally refer to these inputs as 2D signal (despite having C channels), because, they are referenced as vectors indexed by 2d locations without structure in the channel dimension

input

_	 	

 \otimes

1 Kernel is not convolved in the channel dimension

- (1) Kernel is not convolved in the channel dimension
- 2 Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$ and results in output of size $D \times 1 \times 1$

- (1) Kernel is not convolved in the channel dimension
- 2 Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$ and results in output of size $D \times 1 \times 1$

3 Same affine function is applied on all such blocks in the input

- Kernel is not convolved in the channel dimension
- 2 Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$ and results in output of size $D \times 1 \times 1$

3 Same affine function is applied on all such blocks in the input

Preserves the input structure

Preserves the input structure

• 1D signal outputs 1D signal, 2D signal outputs 2D signal

Preserves the input structure

- 1D signal outputs 1D signal, 2D signal outputs 2D signal
- $\, \bullet \,$ Adjacent components in o/p are influenced by adjacent parts in the i/p

- Preserves the input structure
 - 1D signal outputs 1D signal, 2D signal outputs 2D signal
 - $\, \bullet \,$ Adjacent components in o/p are influenced by adjacent parts in the i/p
- If the channel dimension has a metric meaning (e.g. time) 3D convolution can be employed (e.g. frames in a video)

Terminology in Convolution

F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- 3 bias D dimensional

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- ③ bias D dimensional
- (4) input is $N \times C \times H \times W$ dimensional signal

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- 3 bias D dimensional
- (4) input is $N \times C \times H \times W$ dimensional signal
- (5) Output is $N \times D \times (H h + 1) \times (W w + 1)$ tensor

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- 2 weight is $D \times C \times h \times w$ dimensional kernels
- 3 bias D dimensional
- (4) input is $N \times C \times H \times W$ dimensional signal
- (5) Output is $N \times D \times (H h + 1) \times (W w + 1)$ tensor
- 6 Autograd compliant


```
input = torch.empty(128, 3, 20, 20).normal_()
weight = torch.empty(5, 3, 5, 5).normal_()
bias = torch.empty(5).normal_()
output = F.conv2d(input, weight, bias)
output.size()
torch.Size([128, 5, 16, 16])
```

Look/Access the filters

weight[0,0]
tensor([[-0.6974, 0.1342, -0.2632, -0.4672, 0.1827],
[-0.1184, -0.2164, 0.2772, -0.1099, 0.0103],
[-0.8272, 0.3580, 0.2398, -0.5795, -0.9472],
[-1.1734, -0.1019, 0.7394, 0.3342, 0.1699],
[1.9271, 0.1250, 0.4222, 0.2014, 1.1100]])

① Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- ② kernel_size cane be either a pair (h, w) or a single value k interpreted as (k, k).

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- ② kernel_size cane be either a pair (h, w) or a single value k interpreted as (k, k).
- ③ Encloses the convolution as a module

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- ② kernel_size cane be either a pair (h, w) or a single value k interpreted as (k, k).
- 3 Encloses the convolution as a module
- ④ Initializes the kernel parameters and biases as random


```
f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())
```

```
>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
```



```
f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3)
for n, p in f.named_parameters():
...print(n, p.size())
>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
input = torch.empty(128, 3, 28, 28).normal_()
output = f(input)
output.size()
```

```
>>torch.Size([128, 5, 27, 26])
```

Dr. Konda Reddy Mopuri

Padding in Convolution

Adds zeros around the input

- Adds zeros around the input
- ② Takes cares of size reduction after convolution

- Adds zeros around the input
- ② Takes cares of size reduction after convolution
- 3 Instead of zeros, one may pad with signal values at the edges

Stride in Convolution

I Specifies the step size taken while performing convolution

Stride in Convolution

- I Specifies the step size taken while performing convolution
- ② Default value is 1, i.e., move the kernel across the signal densely (without skipping)

Padding and Stride in Convolution

Dilation in Convolution

Manipulates the size of the kernel via expanding its size without adding weights.

Dilation in Convolution

- Manipulates the size of the kernel via expanding its size without adding weights.
- 2 In other words, it inserts 0s in between the kernel values

Without Dilation

Dilation (2, 2)

Expands the kernel by adding rows and columns of zeros

- Expands the kernel by adding rows and columns of zeros
- 2 Default value for dilation is 1, i.e., no zeros placed

- Expands the kernel by adding rows and columns of zeros
- 2 Default value for dilation is 1, i.e., no zeros placed
- 3 Any higher value of dilation makes the kernel sparse

- Expands the kernel by adding rows and columns of zeros
- 2 Default value for dilation is 1, i.e., no zeros placed
- 3 Any higher value of dilation makes the kernel sparse
- ④ Dilation increases the receptive field

- Expands the kernel by adding rows and columns of zeros
- 2 Default value for dilation is 1, i.e., no zeros placed
- 3 Any higher value of dilation makes the kernel sparse
- ④ Dilation increases the receptive field
- It is referred to as 'atrous' convolution